Что такое задняя бабка. Большая энциклопедия нефти и газа

Хорошая конструкция - компромисс между ее достоинствами и недостатками, и решения принимаются в силу наших широты и глубины знаний, собственного опыта исследований и созидания, что и называется талантом конструктора.

Шпиндельный узел, как наиболее ответственный из всех узлов, должен обеспечивать главное функциональное качество станка - высокую точность и производительность.

Точность вращения и жесткость шпиндельного узла определяются не только высокой точностью подшипников качения, но и в значительной степени точностью обработки, качеством поверхности посадочных мест вала, корпуса и сопряженных с подшипником деталей. Точность всех этих элементов должна быть соизмерима с точностью подшипников. В целом точность шпиндельного узла, как и несущей системы станка, определяется тремя характеристиками точности.

Типовая схема отклонений формы и расположения: а — шпинделя; б — корпуса шпиндельной бабки

Кольца шпиндельных подшипников относительно тонкостенны и при посадке приобретают форму более жестких сопряженных поверхностей вала и корпуса. Например, сжатие внутреннего кольца подшипника диаметром 120-140 мм силой руки вызывает овальность до 10 мкм. Требуется выдерживать жесткие допуски на перпендикулярность (биение) упорных поверхностей валов, корпусов, деталей, фиксирующих подшипники в осевом направлении (гайки, втулки). На рис. 1 и в табл. 1 приводятся рекомендации по отклонению формы, расположения и шероховатости посадочных поверхностей шпинделя (вала) и корпуса при установке подшипников классов точности SP и UP и их аналогов.

Деталь Корпус Вал
Класс точности SP UP SP UP
Круглость t IT2/2 IT1/2 IT2/2 IT1/2
Цилиндричность t 1 IT2/2 IT1/2 IT2/2 IT1/2
Конусность t 2 - - IT3/2 IT3/2
Биение t 3 IT1 IT0 IT1 IT0
Соосность t 4 IT4 IT3 IT4 IT3
Диапазон d, D, мм Шероховатость Ra, мкм
d,D< 80 0,4 0,2 0,2 0,1
80 ≤ d,D ≤ 250 0,8 0,4 0,4 0,2
d,D> 250 1,6 0,8 0,8 0,4

Численные значения допусков на параметры круглости t, цилиндричности t 1 , конусности t 2 , биения t 3 , соосности t 4 задаются в функции квалитетов точности ISO (IT0-IT5) - табл. 2.

Численные значения допусков на номинальный диаметр для разных квалитетов ISO

Номинальный диаметр, мм Квалитет ISO, мкм
IT0 IT1 IT2 IT3 IT4 IT5
50-80 1,2 2,0 3,0 5,0 8,0 13,0
80-120 1,5 2,5 4,0 6,0 10,0 15,0
120-180 2,0 3,5 5,0 8,0 12,0 18,0

Обращает внимание высокая точность посадочных поверхностей под подшипники: круглость и цилиндричность t = t 1 = 1,5 мкм, биение t 3 = 2 мкм и др. для диаметров 50-80 мм и класса точности SP.

При несовпадении углов конуса шейки шпинделя и внутреннего кольца двухрядного цилиндро-роликового подшипника беговые дорожки деформируются. На рис. 2 показана деформация внутреннего кольца подшипника при уменьшении конуса шейки шпинделя на 3′. До посадки (рис. 2, а) между кольцом и шейкой шпинделя есть зазор. После посадки (рис. 2, б) кольцо деформировалось. Дорожка 1 увеличилась в диаметре на Δd1 мкм, а дорожка 2 уменьшилась на Δd 2 мкм (рис. 2, в). Посадка подшипника осуществлялась осевым смещением кольца на δ 0 мм вдоль оси конической шейки шпинделя.



Деформация внутреннего кольца подшипника серии 3182100: а — до посадки; б — после посадки; в — график деформаций.

Конструкция шпинделя

Конструкция шпинделя достаточно проста и определяется числом и типом подшипников, их фиксацией, регулировкой зазора- натяга, расположением звена привода, устройством уплотнения и других элементов. Каких-либо специальных требований к конфигурации не предъявляется. При проектировании шпинделя необходимо обосновывать минимально возможные размеры при сохранении его главного функционального качества.

Расчет позволяет строго обосновать оптимальное расстояние между опорами двух- и многоопорных шпиндельных узлов и их жесткость и является главным инструментом по обоснованию конструкции шпиндельных узлов для заданных условий работы. Он позволяет на стадии проектирования учесть влияние каждого элемента шпиндельного узла: вылета шпинделя, пролетной части шпинделя, диаметральных размеров каждого подшипника передней и задней опоры шпинделя, расстояние между подшипниками на общее смещение (отжатие) шпинделя и удельное влияние каждого из них. Вылет шпинделя всегда должен быть минимальным по условиям эксплуатации станка.

Выбор диаметра шпинделя (условно - диаметр шейки шпинделя передней опоры) до настоящего времени строго не обоснован. На наш взгляд, строго математически диаметр шпинделя можно определить формально из условия равножесткости, когда смещения шпинделя из-за деформаций опор и вала равны. Равножесткость, как и равнопрочность, позволяет в равной степени использовать потенциальный ресурс всех элементов конструкции, влияющих на жесткость шпиндельного узла: вала и подшипников. Это формальное условие выгодно использовать всегда. Но равножесткость учитывает только деформационный ресурс, но не учитывает изменение условий работы подшипников под нагрузкой.

Строго физически диаметр шпинделя можно определить из условия минимального допустимого угла перекоса колец подшипников в опорах шпинделя, обеспечивающего сохранение благоприятных условий их работы.

Однако при этом не приводятся расчетные или экспериментальные подтверждения. Тем не менее это направление, учитывающее жесткость шпинделя (диаметр в пролете) с условиями работы подшипников, верно. Необходимо учесть все факторы, вызывающие перекос колец, в том числе соосность отверстий под подшипники и жесткость опор.

На практике давно увеличивают диаметр шпинделя в пролете, если возможен монтаж подшипников с переднего и заднего концов шпинделя.

Конфигурация наружной поверхности шпинделя зависит от выбранной схемы компоновки, способов фиксации подшипников и схемы привода шпинделя.

Конфигурация и требования к внутренней поверхности шпинделя зависят от размещаемых механизмов зажима заготовки или инструмента (многоцелевые станки, одно- и многошпиндельные токарные автоматы). Максимально допустимый внутренний диаметр шпинделя d B следует назначать с учетом деформаций шпинделя в поперечном сечении от действующих на него сил. Отклонение формы сечения шпинделя под нагрузкой должно быть существенно ниже допустимого отклонения от круглости внутреннего кольца подшипника. Эта тема требует специальных исследований. Из опыта проектирования рекомендуется отношение внутреннего диаметра шпинделя d B к диаметру шейки шпинделя под передней опорой d: d B /d = (0,35-0,6). В токарных станках завода ОАО «КП» чаще всего принимается d B /d = (0,5-0,6), предельное отношение d B /d = (0,4-0,7).

При выборе диаметра отверстия в шпинделе следует учитывать изменение прогиба переднего конца шпинделя. Для шпинделя диаметром d = 100 мм и оптимальным расстоянием между опорами с увеличением d B /d от 0,5 до 0,6 прогиб увеличивается, а жесткость уменьшается с 1,3 до 4,3% при радиально-упорных шарикоподшипниках в опорах (k = 0,12 × 10 6 Н/мм). С увеличением жесткости опор влияние отверстия более существенно изменяет жесткость шпиндельного узла: при тех же условиях и жесткости опор k = 2,6 × 10 6 Н/мм жесткость узла снижается с 5,8 до 13,9%.

Из приведенного примера ясно, что при одном подшипнике в опорах для шпиндельного узла на шарикоподшипниках рекомендуется d B /d < 0,5, а на роликоподшипниках - d B /d < 0,5. При этом, как отмечалось выше, необходимо оценить отклонение формы сечения шпинделя от сосредоточенной силы.

Оформление переднего конца шпинделя чаще всего выбирают стандартным, в зависимости от способа крепления инструмента или заготовки.

При проектировании шпиндельных узлов следует уделить серьезное внимание силовым смещениям шпиндельной бабки, которые определяются собственной деформацией корпуса бабки и тангенциальными смешениями в плоскости стыка станина - шпиндельная бабка. В общем балансе силовые смещения шпиндельной бабки могут быть значительными: на долю шпиндельной бабки приходится около 30% осевых смещений (станок мод. 16К20Ф1). На рис. 3 график 1 показывает осевые смещения шпинделя, график 2 - смещения шпиндельной бабки на высоте оси шпинделя, график 3 - смещения шпиндельной бабки в плоскости стыка со станиной. Исследования большой партии станков мод. 16К20Ф1 в производственных условиях показали значительное рассеивание упругих смещений корпуса шпиндельной бабки: размах выборки составлял 21 мкм.



Силовые смещения вдоль оси шпинделя станка мод 16К20Ф1: 1 — шпинделя; 2 — шпиндельной бабки на высоте оси шпинделя; 3 — шпиндельной бабки в плоскости стыка

Деформация корпуса шпиндельной бабки под действием внешних сил не только увеличивает силовые смещения шпинделя и снижает жесткость узла, но и существенно влияет на деформацию посадочных поверхностей. Специально выполненный расчет силовых смещений базовых точек посадочной поверхности шпиндельной бабки станка мод. 16К20 показал следующие результаты: локальные смещения вдоль оси z шпинделя Δz = -(2,1- 5,3) мкм, радиальное смешение по оси а- в горизонтальной плоскости Δx = (0,5-3,8) мкм, радиальное смещение по оси у в вертикальной плоскости Δy = ((-0,2)-5,0) мкм.

Смешения определяли в четырех точках по окружности передней опоры методом конечных элементов с учетом закрепления шпиндельной бабки на станине при нагружении силой 4800 Н. Локальные смещения посадочной поверхности шпиндельной бабки приводят к смещению переднего конца шпинделя до 7-8 мкм.

Общий вид деформированной шпиндельной бабки после нагрузки показан на рис. 4. Обращает внимание деформация передней стенки 1 и посадочной поверхности 2 передней опоры.



Общий вид деформированной шпиндельной бабки станка 16К20 при нагружении силой 4800 Н

Локальные смещения посадочной поверхности под действием сил резания соизмеримы с допуском отклонения формы (см. табл. 2). Напрашивается вывод о необходимости снижения деформаций шпиндельных бабок как с целью снижения силовых смещений шпинделя относительно станины, так и с целью повышения годности вращения шпинделя в условиях силовой нагрузки. Можно также рекомендовать контроль (проверку) силовых смещений посадочных поверхностей шпиндельных бабок для каждой новой модели станка.

Следует подчеркнуть, что создание жестких корпусов шпиндельных бабок более экономично достигается оптимизацией их формы, а не простым увеличением толщины стенок. В работе приводится пример расчета корпуса шпиндельной бабки станка мод. 1К62, когда только за счет перераспределения одной и той же массы по объему конструкции влияние деформаций бабки на точность шпиндельного узла удалось снизить примерно на 35%.

В пролете шпинделя или, чаще всего, на его заднем конце размещается ведомое звено шпинделя - шкив или зубчатое колесо. Их размещение, способ крепления и передача крутящего момента на шпиндель влияют на конструкцию шпинделя. Современное жесткое крепление шкива на шпинделе существенно упрощает конструкцию узла по сравнению с разгруженным шпинделем.

Три первых радиально-упорных подшипника в передней опоре рекомендуется устанавливать вплотную, что обеспечивает максимальную жесткость шпиндельного узла. Наличие проставочного кольца может быть обосновано с позиции смазки и нагревания подшипников. Однако строгих доказательств на этот счет не приводится. На практике применяются проставочные кольца разной высоты и установка подшипников вплотную.

Традиционные конструкции шпиндельной бабки, в которых совмещаются шпиндельный узел и коробка скоростей, все чаше заменяются отдельным корпусом шпиндельного узла, чему способствует бесступенчатое регулирование скорости. Компактная конструкция корпуса легко позволяет увеличить его жесткость, но не изменяет остающейся проблемы тепловыделения в опорах и тепловых деформаций подшипников и шпинделя.

Тепловые деформации в процессе работы станков поставили проблему фиксации корпуса шпиндельной бабки от поперечных смещений. По результатам исследований и опыту эксплуатации станков рекомендуется шпиндельную бабку выполнять симметричной относительно плоскости, проходящей через ось шпинделя перпендикулярно опорной поверхности бабки. Поверхность фиксации должна располагаться в плоскости симметрии.

На рис. 5, а шпиндельная бабка 1 от боковых смещений фиксируется уступом 2, к которому она прижимается винтами (станок мод. МК6801ФЗ). Шпиндельная бабка выполнена симметричной, но поверхность фиксации, уступ 2, смещен относительно плоскости симметрии. На станке мод. МК7130 (рис. 5, б) поверхность фиксации 2 расположена практически в плоскости симметрии и шпиндельная бабка 1 симметрична и прижимается к поверхности 2 клином 3. Роль фиксатора может выполнять конический подпружиненный шип 2, ось которого лежит в плоскости симметрии 1 (рис. 5, в).



В станках с несимметричной шпиндельной бабкой и смещенной от плоскости симметрии фиксирующей поверхности (осью фиксирующего шипа) поперечные тепловые смещения бабки (определялись по смещению шпинделя) больше и достигают 7,5-35 мкм у отечественных и импортных станков после работы на холостом ходу в течение 2,5-3,0 ч при частоте вращения шпинделя n = 2400 мин -1 .

С целью снижения силовых и тепловых деформаций корпуса шпиндельных бабок стали часто делать в виде унифицированной конструкции цилиндрической формы, которая существенно облегчает монтаж, балансировку, регулировку зазора-натяга подшипников и испытания на нагрев. Цилиндрический корпус позволяет готовый шпиндельный узел быстро монтировать в каком-либо корпусе станка. Ранее такие конструкции применялись только для быстроходных сменных шпиндельных узлов (n = (15 000-30 000) мин -1) в целях сокращения времени монтажа и демонтажа. Сменные шпиндельные узлы хранились в инструментальной кладовой наряду с обычным инструментом.

Винты для крепления крышек , фиксирующих подшипники от осевого смещения в передней и задней опорах, могут стать причиной снижения точности вращения шпинделя. Если имеется некая толщина стенки между расточкой в корпусе под подшипник и отверстием под винты (участок пониженной жесткости), то дорожка качения наружного кольца может деформироваться из-за вспучивания посадочной поверхности. Причем вспучивание может проявляться только после затяжки винтов, т.е. после сборки узла. Предпочтительнее использовать большее число винтов, но меньшего размера, во избежание слишком сильного затягивания и вспучивания.

Представляет собой чугунный корпус, закрепленный на левой стороне станины. Назначение передней бабки - осуществление главного движения станка: передача вращающего момента от приводного электродвигателя к обрабатываемой заготовке.
На универсальном станке с помощью конструктивных элементов передней бабки осуществляется привод подачи суппорта с . На станке с ЧПУ функцию перемещения выполняют привода подач и высокоточные ШВП

В передней бабке размещены коробка переключения скоростей и шпиндель, с закрепленным на торце патроном для зажима заготовки.

Коробка скоростей

Коробка скоростей - это набор зубчатых шестерен с двумя кинематическими цепями для ускоренной и замедленной передачи вращения шпинделю.

Переключение скоростей производится рукоятками, выведенными на лицевую панель передней бабки. При этом различное сочетание вошедших в зацепление шестерен определяет число оборотов шпинделя в единицу времени. Соотношение скоростей вращения подчиняется геометрической прогрессии, то есть каждая последующая скорость равна предыдущей, умноженной на одно и то же число.

Коробки скоростей бывают раздельные и совмещенные с передней бабкой. Основная часть раздельной коробки размещена в левой тумбе, устройство перебора скоростей находится в передней бабке. Это необходимо для ограждения шпинделя от воздействия вибраций и нагревания от коробки скоростей.

Большинство же токарных станков имеют совмещенную коробку скоростей, находящуюся в одном месте - передней бабке. Этим достигается компактность конструкции привода шпинделя и сосредоточение управления на одной лицевой панели.

Число оборотов шпинделя настраивается зацеплением зубчатых элементов коробки в различных сочетаниях. Для этих целей современные станки оборудованы однорукояточным механизмом, который одним движением перемещает несколько подвижных элементов коробки.

Преселективный или предварительный механизм переключения скоростей шпинделя является более производительным. На внешнюю панель вынесен поворотный диск с указателем числа оборотов. Токарь совмещает указатель диска с числом оборотов на панели, а затем рукояткой включения переводит станок на вращение с заданной скоростью.

Кроме зубчатых передач в современных станках для привода шпинделя может применяться бесступенчатый метод. Использование приводного электродвигателя с регулируемой скоростью вращения позволяет напрямую подавать крутящий момент на шпиндель. При этом шпиндель может вращаться с любой скоростью в диапазоне, ограниченном характеристиками станка, конструкция передней бабки становится более компактной.* (мин шаг приращения скорости - 1 об/мин)

Шпиндель

Шпиндель - это вращающийся вал, на переднем конце которого закреплен патрон для зажима заготовок. Вращается шпиндель в высокоточных подшипниках качения. Для устранения зазоров передняя опора снабжена регулируемым подшипником с коническим внутренним кольцом.

Настройка подшипника осуществляется специальной гайкой. При затягивании гайки внутреннее кольцо смещается по шпинделю, устраняя зазоры, образовавшиеся в процессе эксплуатации. Задняя опора шпинделя вращается в двух упорных подшипниках, имеющих аналогичную регулировку.

Требования к шпиндельному узлу

Шпиндельный узел является основным элементом токарного станка. От его состояния зависит качество обработки деталей и производительность. Рассмотрим требования, предъявляемые к шпинделю:

  • Точность вращения. Задается соответствующими стандартами. Этот параметр зависит от типа и назначения станка, класса точности. Для специальных станков предусмотрены свои технические условия.
  • Жесткость шпинделя. Также должна определяться соответствующими стандартами. Обычно допустимый прогиб шпинделя определяется по его радиальному биению. Величина прогиба должна быть меньше одной трети величины биения.
  • Виброустойчивость. Эта характеристика влияет на качество готовых изделий.
  • Быстроходность шпинделя. Чем больше скорость вращения, тем выше качество обрабатываемой поверхности. Быстроходность зависит от конструктивных особенностей и назначения станка.
  • Несущая способность. Зависит от выбора шпиндельных опор и правильной подачи смазочных жидкостей.
  • Долговечность. Этот параметр напрямую зависит от качества подшипников, в которых вращается шпиндель.
  • Допустимый нагрев подшипников. Определяется классом точности станка.

Конструкции шпиндельных узлов

Конструкции шпиндельных узлов различаются по многим параметрам: по выполнению конкретных работ и точности их выполнения, габаритам и, как следствие, передаваемой мощности, способу передачи крутящего момента и скорости вращения.

В современных скоростных станках вращение шпинделя уже невозможно в традиционных подшипниках. Здесь применяются воздушные, магнитные опоры вращающегося шпинделя. При этом отклонение от, например, округлости может не превышать 0,2 мкм. Тогда как шпиндель на подшипниках дает отклонение до 1 мкм.

Существуют прецизионные шпиндели с погрешностью обработки всего 0,025 мкм. Такой шпиндель приводится во вращение инерционным приводом. Шпиндель с маховиком разгоняется до заданной скорости, далее происходит отключение от привода и дальнейшее вращение по инерции.

Настройка станка

Для ремонта машины постоянно требуются металлические детали. Хорошо, если модель распространенная — можно купить. Если же авто редкое, приходится либо долго ждать пока доставят, либо заказывать изготовление. В таком случае можно приобрести токарный станок для гаража. При наличии опыта его можно использовать для подработки.

Какие виды токарных станков подходят для частного использования

Всего токарных станков девять видов, но далеко не все нужны в гараже. Чаще всего у частников можно увидеть небольшие токарно-винторезные станки. Наряду с обработкой деталей (шлифовка, сверление, фрезеровка, сверление радиальных отверстий и др.) они выполняют нарезание резьбы разного типа и точение конуса. Именно такой токарный станок для гаража стараются купить — он покрывает почти все потребности автовладельцев.

Выпускаются в двух видах — настольные и со станиной (напольные). Настольные — небольшие, с малым весом (до 200 кг) станки. Для них в гараже проще найти место. Недостаток — большие и тяжелые детали на них не обработаешь. Еще один момент: из-за небольшой массы они не всегда в состоянии выдать высокую точность обработки.

Напольные токарные станки (обычно школьные) имеют значительно большую массу и габариты. Для нормальной эксплуатации под них надо делать отдельный фундамент. Возможна установка на виброгасителях, но их найти совсем непросто.

Устройство токарного станка

Для того чтобы выбрать токарный станок желательно знать его устройство, назначение, функции и возможные параметры каждой из частей. Для начала разберем основные узлы.



Это основные узлы токарного станка. Есть смысл подробнее рассмотреть сложные узлы, так как от их исполнения зависят возможности и работа оборудования.

Станина

Чаще всего это две параллельные массивные металлические балки/стенки, соединенные поперечинами для придания большей жесткости. По станине перемещается суппорт и задняя бабка. Для этого на станине проточены направляющие салазки. Задняя бабка перемещается по плоским направляющим, суппорт — по призматическим. Очень редко встречаются призматические направляющие для задней бабки.


Станина для токарного станка по металлу — заводская и самодельная

При выборе б/у станка обращайте внимание на состояние салазок и на плавность перемещения частей по ним.

Передняя (шпиндельная) бабка

Передняя бабка в современных токарных станках,чаще всего, объединяет в себе держатель детали и устройство изменения скорости вращения шпинделя. Есть несколько типов управления скоростью вращения — при помощи перевода рычагов в определенное положение, при помощи регулятора.


Управление регулятором с плавным изменением скорости вращения осуществляется на базе управления микропроцессором. В этом случае на корпусе бабки имеется жидкокристаллический дисплей на котором отображается текущая скорость.

Основная деталь передней бабки — шпиндель, который с одной стороны соединяется со шкивом электропривода, с другой имеет резьбу, на которую накручиваются патроны, удерживающие обрабатываемую деталь. Точность выполнения токарных работ напрямую зависит от состояния шпинделя. В этом узле не должно быть биений и люфтов.


Гитара шестерен — для передачи вращения и изменения его скорости

В передней бабке находится система сменных шестерен для передачи и изменения вращения на вал коробки передач. Когда будете выбирать токарный станок для гаража, обращайте внимание на состояние шестерен и отсутствие люфта шпинделя. От этого зависит точность обработки заготовок.

Задняя бабка

Задняя бабка подвижна — передвигается по направляющим на станине. Подводится к детали, подстраивается ее положение, пинолью упирается в деталь, удерживая ее в нужном положении, положение пиноли фиксируется поворотом соответствующей рукоятки. После чего закрепляется положение задней бабки еще одной рукояткой фиксации.

В некоторых моделях задняя бабка предназначена не только для поддержки массивных или длинных деталей в заданном направлении, но и для их обработки.


Для этого на пиноли, в зависимости от выполняемых операций, закрепляется соответствующая оснастка — резцы, метчики, сверла. Дополнительный центр станка на задней бабке может быть неподвижным или вращающимся. Вращающийся задний центр делают на высокоскоростных станках, для снятия крупной стружки, вытачивания конусов.

Суппорт

Суппорт токарного станка — подвижная часть, на которой крепятся инструменты для обработки деталей. Благодаря специальной конструкции этого узла передвигаться резец может в трех плоскостях. Перемещение по горизонтали обеспечивается направляющими на станине, продольными и поперечными салазками.


Положение резца относительно поверхности станка (и детали) задается поворотным резцедержателем. В каждой из плоскостей имеется фиксатор, обеспечивающий удержание в заданном положении.

Держатель резца может быть одно или многоместным. Резцедержатель, чаще всего, выполнен в виде цилиндра с боковой прорезью, в которую вставляется резец, фиксирующийся болтами. На несложных станках на суппорте имеется специальный паз, в который вставляется выемка на нижней части держателя. Так происходит фиксация режущего инструмента на станке.

Токарный станок для гаража: параметры

В первую очередь определяетесь с массой и типом подключения. Выбирая массу, не стоит стремиться найти самый легкий станок. Очень легкие не дают устойчивости, могут вибрировать при работе, что скажется на точности работы. Да, тяжелые станки устанавливать проблематично, но установка — это единичное мероприятие, в работать придется регулярно. Потому вес — далеко не самый основной критерий выбора.


Слишком большие токарные станки не в каждый гараж можно установить, а небольшие и средние — отличный выбор

Тип подключения — однофазный или трехфазный — это уже важнее. И то, трехфазные можно подключить к 220 через специальные пускатели. Из электрических характеристик важна еще мощность двигателя. Чем она выше тем большую скорость вращения может развить токарный станок. Это общие моменты. Есть еще специальные:

  • Диаметр заготовки, которую можно на станке обрабатывать. Определяется диаметром обработки над станиной и над суппортом.
  • Длинна обрабатываемой детали. Зависит от хода.
  • Перечень операций.
  • Максимальное число оборотов.
  • Способ регулировки — плавный, ступенчатый.
  • Возможность обратного хода.

Размеры обрабатываемых деталей напрямую связаны с размерами станка. Так что тут приходится искать разумный компромисс. Обычно не хочется слишком загромождать гараж, но надо обрабатывать габаритные детали.

Микро и мини токарные станки

Чтобы не загромождать гараж можно найти мини- или микро токарные станки. Они отличаются совсем уж небольшими размерами и малой массой. Например, микро-токарный станок для гаража PROMA SM-250Е имеет размеры 540*300*270 мм и массу 35 кг. Обрабатывать может заготовки длиной 210 мм и диаметром 140 мм. Плавная регулировка скоростей от 100 до 2000 об/мин. Для таких размеров не так уж и плохо.


Токарные мини станки — в гараже им самое место

Несмотря на маленькие размеры, может производить следующие операции:

  • обтачивание поверхностей,
  • нарезание резьбы;
  • сверление;
  • зенкование;
  • развертывание.

Возможны также шлифовка деталей, накатка, заточка инструмента. Основные операции, как видите, присутствуют. Недостаток в том, что на станках такого типа хоть сколько нибудь крупные детали не обработаешь.И еще недостаток конкретно этой модели цена. Стоит этот токарный станок для гаража от 900$.

В той же категории есть китайские JET BD-3 и JET BD-6 (цена 500-600$) и отечественные КРАТОН MML-01 (цена 900$), Энкор Корвет 401 (650$), немецкие Optimum — от 1300$ до 6000$; чешские Proma — от 900$,

Напольные варианты

Тут выбор не так широк, потому что и цены и масса намного выше. Есть несколько проверенных моделей, которые можно установить в гараже.


Это так называемые школьные станки — ТВ 4 (его усовершенствованную версию ТВ 6), ТВ 7 и настольное исполнение ТВ 16. При массе 280 кг (ТВ 4) и 400 кг ТВ 7, желательно наличие отдельного фундамента. Если поставить его просто на бетонный пол, он его разобьет.

Cтраница 1


Шпиндельная бабка (рис. 121) представляет собой двухва-ловую коробку. На левом конце вала 12 установлен приводной шкив 13 клиноременной передачи, и сменный шкив 14, от которого передается вращение на коробку подач. На этом же валу установлен блок зубчатых колес / /, переключаемый в положение А и Б поворотом валика с шестигранником, выведенным на переднюю крышку шпиндельной бабки. Рядом с этим блоком расположено зубчатое колесо 10, приводящее во вращение шестеренчатый насос смазки механизмов шпиндельной бабки и коробки подач.  

Шпиндельная бабка устанавливается на поперечине в крайнем положении. Поперечина устанавливается в продольной плоскости в среднем положении на колонне. Колонна, шпиндельная бабка и поперечина закрепляются. К шпинделю прикладывается нагрузка согласно нижеследующей таблице. Нагрузка измеряется с помощью тарированного динамометра, установленного на фундаментной плите или на столе.  

Кинематическая схема токарного автомата мод. КТ61.  

Шпиндельная бабка 4 смонтирована на левой головной части станка, и в ней находится шпиндель, вращающийся в подшипниках качения. В шпинделе станка смонтировано зажимное устройство - цанга, работающая от гидроцилиндра, расположенного на шпинделе. Привод подачи 11 смонтирован на правом торце станины.  

Шпиндельная бабка с задним центром и обрабатываемым колесом движется в радиальном направлении. Эти станки предназначены для нарезания зубчатых колес малых диаметров, шлице-вых валиков и цилиндрических зубчатых колес, изготовляемых за одно целое с валом. Во втором случае нарезаемое колесо одним концом закреплено в шпинделе, а другим поддерживается люнетами или задней бабкой. Червячная фреза расположена за нарезаемым колесом и закреплена на оправке фрезерного суппорта, который перемещается по горизонтальным направляющим станины.  


Шпиндельная бабка базируется на горизонтальной плоской направляющей и вертикальной направляющей 3, расположенной в плоскости, проходящей через ось шпинделя. С точки зрения уменьшения смещения шпинделя от тепловых деформаций такое базирование является лучшим. На рис. 33 показана коробка скоростей станка средней гаммы, размещаемая в тумбе. Шкиву 8 движение сообщается от электродвигателя зубчатым ремнем.  

Развертка коробки скоростей станка средней гаммы.  

Шпиндельная бабка сделана с двойным перебором (с передаточным отношением т и Те) Вследствие размещения его на двух валах зубчатые колеса имеют небольшие диаметры.  

Многооперационный станок.  

Шпиндельная бабка 4 перемещается по вертикали. Во время выполнения очередной операции на станке осуществляются движения для выбора из магазина следующего инструмента - магазин поворачивается и располагает очередной инструмент против механической руки, которая его захватывает и вынимает из гнезда. По сигналу из узла управления автооператор 2 опускается вниз, инструмент вынимается из шпинделя, механическая рука поворачивается на 180, в шпиндель вставляется новый инструмент, где он автоматически зажимается, а предыдущий возвращается в магазин на его прежнее место.  

Шпиндельная бабка 3 представляет собой коробчатый литой корпус, установленный на верхнюю плоскость стола. В расточках корпуса устанавливается четыре пиноли. Концы пинолей входят в отверстия валов червячных колес, передающих им вращение. Валы червячных колес смонтированы в подшипниках скольжения и от осевых перемещений ограничены упорными шарикоподшипниками. В конусные отверстия пинолей вставляются поводковые центры.  

Изобретение относится к машиностроению и предназначено для использования в металлорежущих станках, особенно в станках высокой точности, например в координатно-расточных или сверлильно-фрезерно-расточных. Шпиндельная бабка содержит корпус, шпиндельное устройство, включающее шпиндель, гильзу, механизм зажима инструмента, гидроцилиндр отжима инструмента, а также двигатель. Новым в устройстве является то, что электродвигатель расположен соосно с гидроцилиндром отжима инструмента и соединен со шпинделем напрямую через промежуточный вал, установленный с возможностью перемещения относительно верхнего конца вала, являющегося одновременно толкателем механизма отжима инструмента, при этом нижний конец вала-толкателя соединен с верхним концом шпинделя. 1 ил.

Изобретение относится к машиностроению и предназначено для использования в металлорежущих станках, особенно в станках высокой точности, например в координатно-расточных или сверлильно- фрезерно-расточных. Известны и применяются шпиндельные бабки, в которых шпиндель и электропривод располагаются на разных осях. Вращение при этом от электропривода к шпинделю передается посредством коробки скоростей, которая также смещена от оси шпинделя. Механизм отжима инструмента располагается или на одной оси со шпинделем или смещен. Известные конструкции шпиндельных бабок имеют длинную кинематическую цепь от электропривода до шпинделя, что является причиной возникновения вибрации, шума при работе шпинделя. Причем с повышением числа оборотов шпинделя, вибрации и шум возрастают. Вибрации шпинделя значительно снижают геометрическую точность обрабатываемых деталей, что совершенно недопустимо для особо высокоточных станков, которыми являются координатно-расточные станки. Из известных технических решений наиболее близким по технической сущности к изобретению является шпиндельная бабка, в которой шпиндель с гидроцилиндром отжима инструмента и с пакетом тарельчатых пружин закрепления инструмента расположены на разных осях с электроприводом вращения шпинделя и с коробкой скоростей. Недостатками прототипа являются сложность конструкции шпиндельной бабки, обусловленная расположением ее составных механизмов на разных осях; повышение вибрации и шум, обусловленные длинной кинематической цепью от электропривода до шпинделя; невозможность получения высокой геометрической точности обрабатываемых деталей при достижении максимальных частот вращения шпинделя, так как с увеличением оборотов шпинделя вибрация его увеличивается. Целью изобретения является упрощение конструкции, снижение вибраций и повышение точностных характеристик при максимальных частотах вращения шпинделя. Поставленная цель достигается тем, что в известной шпиндельной бабке, содержащей электропривод и корпус, в котором размещены шпиндельный узел, гидроцилиндр отжима инструмента, расположенный соосно со шпинделем, и механизм зажима инструмента с толкателем, шпиндельная бабка снабжается промежуточным валом, установленным в корпусе, причем электропривод напрямую соединяется с указанным промежуточным валом и располагается на одной оси с гидроцилиндром отжима инструмента и шпинделем, при этом толкатель механизма зажима инструмента выполняется в виде установленного с возможностью осевого перемещения вала, соединенного с промежуточным валом и шпинделем. Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается введением в шпиндельную бабку промежуточного вала, установленного в корпусе и напрямую соединенного с электроприводом, и расположенным на одной оси с гидроцилиндром отжима инструмента и шпинделем. Вместе с тем толкатель механизма зажима инструмента выполняется в виде установленного с возможностью осевого перемещения вала, который соединяется с промежуточным валом и шпинделем. Использование предлагаемого устройства шпиндельной бабки позволяет значительно упростить конструкцию шпиндельной бабки; снизить шумовые характеристики станка и вибрации шпинделя станка и тем самым увеличить геометрическую точность обрабатываемых деталей. На чертеже изображена шпиндельная бабка, продольный разрез. Предлагаемое устройство содержит корпус 1, к верхнему концу которого прикреплен электропривод 2. Вал 3 электропривода посредством шпонки 4 соединен с одним концом промежуточного вала 5, вращающегося в подшипниках 6, ось которых совпадает с осью электропривода 2. Другой конец промежуточного вала 5 соединен посредством шпонки 7 с толкателем 8 с упором его в торец отверстия промежуточного вала. Толкатель 8 представляет собой две цилиндрических поверхности: меньшего диаметра 9 и большего диаметра 10, разделенных буртом 11, на котором нарезаны зубья (шлицы). Толкатель своим меньшим диаметром 9 с гарантированным зазором располагается в поршне 12 гидроцилиндра 13 отжима инструмента, зубья бурта 11 входят в зацепление с зубьями, выполненными на внутренней поверхности шпинделя 14. Цилиндрическая поверхность большего диаметра 10 по посадке расположена в центральном отверстии шпинделя 14. Возможный зазор между промежуточным валом 5 и цилиндрической поверхностью меньшего диаметра 9 толкателя, а также между шпинделем 14 и цилиндрической поверхностью большего диаметра 10 толкателя значительно меньше гарантированного зазора между отверстием поршня 12 и цилиндрической поверхностью меньшего диаметра 9 толкателя 8. Вместе с тем при расположении поршня 12 в крайнем верхнем положении между внутренней торцовой поверхностью поршня 12 и торцовой поверхностью бурта 11 обеспечивается гарантированный зазор. Это позволяет обеспечить вращение толкателя 8 вместе с промежуточным валом 5 и шпинделем 14 без контакта с поршнем 12 гидроцилиндра 13 отжима инструмента. Гидроцилиндр 13 сверху при помощи винтов закрывается крышкой 15, в которую упирается поршень 12 в верхнем положении. Толкатель 8 нижним своим торцом опирается на тягу 16, верхний конец которой расположен в центральном отверстии шпинделя 14, а нижний в механизме зажима инструмента 17 и в цанге 18. На тяге 16 расположен пакет тарельчатых пружин 19. Шпиндель 14 размещен на подшипниках 20 внутри гильзы 21, которая крепится к корпусу 1 шпиндельной бабки, снизу закрывается крышкой 22, а сверху соединяется с гидроцилиндром 13. В цангу 18 вставляется хвостовик 23 инструмента. Устройство работает следующим образом. При необходимости освобождения хвостовика 23 инструмента из шпинделя 14 необходимо остановить шпиндель и механизм зажима инструмента 17 привести в положение "Отжато". В тот момент, когда шпиндель 14 перестал вращаться, поршень 12 начинает смещаться вниз под действием давления масла, поступающего в полость А гидроцилиндра 13. При этом поршень 12 внутренним торцом нажимает на торец бурта 11 толкателя 8 и смещает его вниз. Толкатель 8 торцом поверхности 10 нажимает на торец тяги 16, смещая ее вниз, сжимая пакет тарельчатых пружин 19 и толкая цангу 18, которая, разжимаясь, освобождает хвостовик 23 инструмента. После смены инструмента давление в полости А сбрасывается, а масло подается в полость Б, создавая в нем давление и перемещая поршень 12 вверх до упора наружного торца поршня 12 в крышку 15 гидроцилиндра 13. Пакет тарельчатых пружин 19 разжимается, перемещая тягу 16 вверх вместе с цангой 18, которая зажимает грибок инструмента в шпинделе 14. При перемещении тяги 16 вверх она сдвигает вдоль оси толкатель 8 до упора верхним его торцом в торец отверстия промежуточного вала 5, который смещаться в осевом направлении не может, так как зафиксирован в подшипниках 6, а они в корпусе. В этом положении восстанавливается гарантированный зазор между внутренней торцовой поверхностью поршня 12 и торцовой поверхностью бурта 11 толкателя 8. Таким образом толкатель 8 в устройстве шпиндельная бабка выполняет две функции: передает вращение от электропривода 2 на шпиндель 14 через промежуточный вал 5; в момент, когда шпиндель 14 не вращается, смещает в осевом направлении тягу 16 механизма зажима инструмента.

ФОРМУЛА ИЗОБРЕТЕНИЯ

ШПИНДЕЛЬНАЯ БАБКА, содержащая электропривод и корпус, в котором размещены шпиндельный узел, гидроцилиндр отжима инструмента, расположенный соосно с шпинделем, и механизм зажима инструмента с толкателем, отличающаяся тем, что шпиндельная бабка снабжена промежуточным валом, установленным в корпусе, причем электропривод напрямую соединен с промежуточным валом и расположен на одной оси с гидроцилиндром отжима инструмента и шпинделем, при этом толкатель механизма зажима инструмента выполен в виде установленного с возможностью осевого перемещения вала, соединенного с промежуточным валом и шпинделем.