Напор и расход насоса. Как определить требуемый напор и расход насоса

Как вычислить напор насоса скважины?

Когда дело доходит до параметров насоса, то возникает один тяжелый вопрос , на который сложно ответить - легко ! Большинство экспертов из этой области ответили - бы, какой существует сложный и спорный вопрос вычислений .

Вам повезло!!! Мы нашли легкий алгоритм вычисления напора насоса. По данному расчету даже далекий от этого человек, сможет сделать расчет.

И так, приступим! На изображении показана схема, которая позволяет увидеть все напоры, необходимые для расчетов. Если изображения нет, то обновите страницу! Если после обновления страницы изображение не появилось, то напишите в комментарии о данной проблеме. Комментарии находятся в конце статьи.

Схема 1 (см. изображение):

Во-первых , кто далек от понимания "напор", то рекомендую ознакомиться: Что такое напор?

Во-вторых , краткий рассказ о том, как понять данную схему. На схеме имеются вертикальные размеры. Необходимо все повороты трубопровода мысленно отсечь - их не существуют. К тому же расчет вычисления напора насоса не затрагивает горизонтальный . Все что нужно знать - это их высотное расположение. Так как в большинстве случаев длина горизонтально расположенных труб очень маленькая и не превышает 30 метров. 30 метров для очень мало и не стоит того, чтобы вносить их в расчет. Разница не превышает 10%. А также горизонтальный трубопровод добавляет, только динамическое гидравлическое сопротивление. А для расчета нам нужно знать только напор создаваемый высотой.

В-третьих , Давление и напор синонимы. Давление в 1 bar = 10 метрам напора.

Если быть точнее:

Для расчета первым делом нужно знать или выбрать подходящее давление в кране последнего (второго) этажа. Для частного дома Вы можете взять от 10 до 25 метров напора. Например, в центральном , в квартирах этот передел от 20-40 метров. 10 метров считается экономным вариантом и вполне подходит для водоснабжения. К тому же чем меньше напор, тем больше Вы экономите электроэнергию потребляемую насосом - факт!

Для примера, запоминайте, пригодиться: Я выбираю 10 метров минимального напора в кране второго этажа.

Соответственно минимальный напор в кране 1 этажа будет равен разнице по высоте. Если этаж составляет 3 метра, то минимальный напор = 13 метров.

Автоматический блок реле давления находиться от крана второго этажа на высоте ниже на 6 метров. Это означает, что минимальный напор в реле давления будет равен 16 метров. И так порог включения насоса будет равен 16 метрам (1,6 bar).

Прибавляем к 16 метрам еще 15 метров и получаем максимальное давления реле. То есть порог отключения реле должен быть равен 31 метр. Вы можете, конечно, для экономности и прибавить 10 метров. И тогда получить порог отключения в 26 метров и тоже будете правы.

И так мы выбираем порог отключения насоса в 31 метр.

Чтобы найти этот напор необходимо знать:

Большинство специалистов сразу не скажут Вам минимальный столб воды. Минимальный столб воды определяется практически. Если у Вас нет таких данных, то смело можно брать в расчет минимальную высоту насоса от дна. То есть в нашем случае за минимальный столб воды принимаем там, где находится насос (Верхняя точка насоса).

Данные для нашего случая:

Расчет: Установленный напор = Глубина скважины - минимальный столб воды + высота (от земли до автоматики реле) + Максимальный напор реле давления. Итого = 30 - 10 + 2 + 31 = 53 метра.

Немного потренировавшись в расчетах, можно считать по-другому - проще. Нам для расчета необходимо знать высоту от минимального столба воды до отметки в максимальный напор. Смотри схему выше.

1. Чтобы восполнить потери при падение напряжения в сети. Когда напряжение в сети падает, то и напор самого насоса падает.

2. Для хорошего достижения порога максимального давления. Если Вы подберете с установленным напором, то может возникнуть ситуация, когда насос не сможет достичь порога максимального давления на реле. И система зависнет в подвешенном положении. Очень часто в таком случае сгорают насосы. Если у Вас напряжение слабое, то ставьте стабилизаторы напряжения.

Определение понятия напора
Повышение давления насосом называется напором. Под напором насоса (H) понимается удельная механическая работа, передаваемая насосом перекачиваемой жидкости.

H = E/G [m]

E = механическая энергия [Н м]
G = вес перекачиваемой жидкости [Н]

При этом напор, создаваемый насосом, и расход перекачиваемой жидкости (подача) зависят друг от друга. Эта зависимость отображается графически в виде характеристики насоса. Вертикальная ось (ось ординат) отражает напор насоса (H), выраженный в метрах [м]. Возможны также другие масштабы шкалы напора. При этом действительны следующие соотношения:

10 м в.ст. = 1 бар = 100 000 Па = 100 кПа

На горизонтальной оси (ось абсцисс) нанесена шкала подачи насоса (Q), выраженной в кубометрах в час [м3/ч]. Возможны также другие масштабы шкалы подачи, например [л/с]. Форма характеристики показывает следующие виды зависимости: энергия электропривода (с учетом общего КПД) преобразуется в насосе в такие формы гидравлической энергии, как давление и скорость. Если насос работает при закрытом клапане, он создает максимальное давление. В этом случае говорят о напоре насоса H 0 при нулевой подаче.

Когда клапан начинает медленно открываться, перекачиваемая среда приходит в движение. За счет этого часть энергии привода преобразуется в кинетическую энергию жидкости. Поддержание первоначального давления становится невозможным. Характеристика насоса приобретает форму падающей кривой. Теоретически характеристика насоса пересекается с осью подачи. Тогда вода обладает только кинетической энергией, то есть давление уже не создается. Однако, так как в системе трубопроводов всегда имеет место внутреннее сопротивление, в реальности характеристики насосов обрываются до того, как будет достигнута ось подачи.


— Различная крутизна при идентичном корпусе и рабочем колесе насосов (например, в зависимости от частоты вращения мотора)

Форма характеристик насоса
На рисунке показана различная крутизна характеристик насоса, которая может зависеть, в частности, от частоты вращения мотора.

При этом крутизна характеристики и смещение рабочей точки влияет также на изменение подачи и напора:
пологая кривая
– большее изменение подачи
при незначительном изменении напора
крутая кривая
– большое изменение подачи
при значительном изменении напора

Трение, имеющее место в трубопроводной сети, ведет к потере давления перекачиваемой жидкости по всей длине. Кроме этого, потеря давления зависит от температуры и вязкости перекачиваемой жидкости, скорости потока, свойств арматуры и агрегатов, а также сопротивления, обусловленного диаметром, длиной и шероховатостью стенок труб.
Потеря давления отображается на графике в виде характеристики системы. Для этого используется тот же график, что и для характеристики насоса.

Характеристика системы

Форма характеристики показывает следующие зависимости:

Причиной гидравлического сопротивления, имеющего место в трубопроводной сети, является трение воды о стенки труб, трение частиц воды друг о друга, а также изменение направления потока в фасонных деталях арматуры.
При изменении подачи, например, при открывании и закрывании термостатических вентилей, изменяется также скорость потока и, тем самым, сопротивление.
Так как сечение труб можно рассматривать как площадь живого сечения потока, сопротивление изменяется квадратично. Поэтому график будет иметь форму параболы. Эту связь можно представить в виде следующего уравнения:

H1/H2 = (Q1/Q2) 2

Выводы
Если подача в трубопроводной сети уменьшается в два раза, то напор падает на три четверти. Если, напротив, подача увеличивается в два раза, то напор повышается в четыре раза. В качестве примера можно взять истечение воды из отдельного водопроводного крана.
При начальном давлении 2 бара, что соответствует напору насоса прим. 20 м, вода вытекает из крана DN 1/2 с расходом 2 м3/ч.
Чтобы увеличить подачу в два раза, необходимо повысить начальное давление на входе с 2 до 8 бар.

Рабочая точка

Точка, в которой пересекаются характеристики насоса и системы, является рабочей точкой системы и насоса . Это означает, что в этой точке имеет место равновесие между полезной мощностью насоса и мощностью, потребляемой трубопроводной сетью. Напор насоса всегда равен сопротивлению системы. От этого зависит также подача, которая может быть обеспечена насосом.

При этом следует иметь в виду, что подача не должна быть ниже определенного минимального значения. В противном случае это может вызвать слишком сильное повышение температуры в насосной камере и, как следствие, повреждение насоса. Во избежание этого следует неукоснительно соблюдать инструкции производителя.

Рабочая точка за пределами характеристики насоса может вызвать повреждение мотора. По мере изменения подачи в процессе работы насоса также постоянно смещается рабочая точка. Найти оптимальную расчетную рабочую точку в соответствии с максимальными эксплуатационными требованиями входит в задачи проектировщика.

Такими требованиями являются:

  • для циркуляционных насосов систем отопления - потребление тепла зданием,
  • для установок повышения напора - пиковый расход для всех мест водоразбора.

Все остальные рабочие точки находятся слева от данной расчетной рабочей точки.

На двух рисунках показано влияние изменения гидродинамического сопротивления на смещение рабочей точки. Смещение рабочей точки по направлению влево от расчетного положения неизбежно вызывает увеличение напора насоса. В результате этого возникает шум в клапанах. Регулирование напора и подачи в соответствии с потребностью может производиться применением насосов с частотным преобразователем. При этом существенно сокращаются эксплуатационные расходы.

Кривая характеристики насоса

Напор (H) насоса - избыточное давление, создаваемое насосом. Напор измеряется в (м).

Напор, который должен обеспечить насос, есть сумма геодезической разности высот и потерь напора (= высота потерь) в трубопроводах и арматуре.

Следует учитывать, что при запуске, а затем при эксплуатации, насос меняет свой режим работы. Выбор мощности мотора насоса следует проводить из условий, что он в определенный период времени работает при максимальном нагрузке, например, при H geo max. Рассмотрим, как изменяется эта величина в зависимости от режима работы насоса.

Рассмотрим пример: напорный трубопровод проложен по переменной местности и имеет несколько вершин. При запуске, когда напорный трубопровод пустой, насос должен поднять воду с уровня NN (–1 м) на высоту NN1 (10 м), а после заполнения трубопровода NN1 – NN2 он должен поднять воду на высоту NN3 (11 м).

В начальный момент времени для заполнения всех участков трубопровода насос должен преодолевать высоту Hgeo max, равную:

Hgeo max = (NN1 – NN) + (NN3 – NN2)
= + (11 м – 5 м)

= 17 м

Когда трубопровод NN – NN 3 заполнится стоками, геодезическая высота уменьшается:

Hgeo = NNA – NN
= 6 м – (-1 м)

= 7 м

Комментарии к расчету геодезических высот:
Если воздух не удаляется из напорного трубопровода, тогда геодезическая высота определяется как сумма высот всех восходящих трубопроводов (участок 1 + участок 3) , так как при этом тратится дополнительная энергия на сжатие воздуха в нисходящем участке (участок 2) . Поэтому требуется большая энергия для преодоления высотных точек.

При эксплуатации насоса без удаления воздуха из напорного трубопровода : после того как воздух вытесняется из трубопровода, трубопровод наполняется полностью. Поэтому напор, который должен обеспечивать насос, определяется лишь геодезическим перепадом высот Hgeo между выходом/ передаточным резервом NNA и уровнем воды в шахте NN, при котором производится отключение насоса.

Если воздух удаляется из трубопровода, тогда при включении насоса следует учитывать разность между уровнем воды в шахте (точка включения насоса) и самой высокой точкой Hgeo max.

При эксплуатации с удалением воздуха : во время эксплуатации насос работает в том же режиме, что и “без удаления воздуха”.

Для правильного выбора насоса и мотора следует учитывать то, что они могут работать на разных ежимах. Это необходимо сделать, чтобы не допустить выхода насоса или мотора из строя и гарантировать их оптимальную работу.

Определение понятия напора

Форма характеристик насоса. Различная крутизна при идентичном корпусе и рабочем колесе насосов (например, в зависимости от частоты вращения мотора)

Различное изменение подачи и давления

Напор насоса (H) - удельная механическая работа, передаваемая насосом перекачиваемой жидкости .

H=E/G[m]

E = механическая энергия [Н м]
G = вес перекачиваемой жидкости [Н]

Напор, создаваемый насосом , и расход перекачиваемой жидкости (подача) зависят друг от друга. Эта зависимость отображается графически в виде характеристики насоса. Вертикальная ось (ось ординат) отражает напор насоса (H), выраженный в метрах [м]. Возможны также другие масштабы шкалы напора. При этом действительны следующие соотношения:
10 м в.ст. = 1 бар = 100 000 Па = 100 кПа
Горизонтальная ось (ось абсцисс) нанесена шкала подачи насоса (Q), выраженной в кубометрах в час [м3/ч]. Возможны также другие масштабы шкалы подачи, например [л/с].

Форма характеристики показывает следующие виды зависимости: энергия электропривода (с учетом общего КПД) преобразуется в насосе в такие формы гидравлической энергии, как давление и скорость. Если насос работает при закрытом клапане, он создает максимальное давление. В этом случае говорят о напоре насоса Hо при нулевой подаче. Когда клапан начинает медленно открываться, перекачиваемая среда приходит в движение. За счет этого часть энергии привода преобразуется в кинетическую энергию жидкости. Поддержание первоначального давления становится невозможным. Характеристика насоса приобретает форму падающей кривой. Теоретически характеристика насоса пересекается с осью подачи. Тогда вода обладает только кинетической энергией, то есть давление уже не создается. Однако, так как в системе трубопроводов всегда имеет место внутреннее сопротивление, в реальности характеристики насосов обрываются до того, как будет достигнута ось подачи.


При обустройстве водоснабжения и отопления загородных домов и дач одной из самых насущных проблем является подбор насоса. Ошибка в выборе насоса чревата неприятными последствиями, среди которых перерасход электроэнергии – самое простое, а выход из строя погружного насоса – самое распространенное. Самыми главными характеристиками, по которым необходимо выбирать любой насос, являются расход воды или производительность насоса, а также напор насоса или высота, на которую насос может подавать воду. Насос – не то оборудование, которое можно брать с запасом – «на вырост». Все должно быть выверено строго согласно потребностям. У тех, кто поленился произвести соответствующие расчеты и выбрал насос «на глазок», практически всегда бывают проблемы в виде отказов и поломок. В данной статье мы подробно остановимся на том, как определить напор насоса и производительность, предоставим все необходимые формулы и табличные данные.


Погружные насосы обычно устанавливаются в глубокие скважины и колодцы, там, где самовсасывающий поверхностный насос не справится. Такой насос характерен тем, что работает полностью погруженным в воду, а если уровень воды опускается до критической отметки, то отключается и не включится, пока уровень воды не поднимется. Работа погружного насоса без воды «всухую» чревата поломками, поэтому необходимо подобрать насос с такой производительностью, чтобы она не превышала дебет скважины.

Расчет производительности/расхода погружного насоса.

Производительность насоса не зря иногда называют расходом, так как расчеты данного параметра напрямую связаны с расходом воды в водопроводе. Чтобы насос был способен обеспечивать потребности жильцов в воде, его производительность должна быть равна или быть чуть больше расхода воды из одновременно включенных потребителей в доме.
Этот суммарный расход можно определить, сложив расходы всех, возможно одновременно включенных, потребителей воды в доме. Чтобы не утруждать себя лишними расчетами, можете воспользоваться таблицей примерных значений расходов воды в секунду. В таблице указаны всевозможные потребители, такие как умывальник, унитаз, раковина, стиральная машина и другие, а также расход воды в л/с через них.

Таблица 1. Расход потребителей воды.


После того как просуммировали расходы всех требуемых потребителей, необходимо найти расчетный расход системы, он будет несколько меньше, так как вероятность одновременного использования абсолютно всех сантехприборов крайне мала. Узнать расчетный расход можно из таблицы 2. Хотя иногда для упрощения расчетов полученный суммарный расход просто умножают на коэффициент 0,6 – 0,8, принимая, что одновременно будет использоваться только 60 – 80 % сантехнических приборов. Но данный способ не совсем удачен. Например, в большом особняке с множеством сантехнических приборов и потребителей воды могут проживать всего 2 – 3 человека, и расход воды будет намного меньше суммарного. Поэтому настоятельно рекомендуем воспользоваться таблицей.

Таблица 2. Расчетный расход системы водоснабжения .



Полученный результат будет реальным расходом системы водоснабжения дома, который должен покрываться производительностью насоса. Но так как в характеристиках насоса производительность обычно считается не в л/с, а в м3/ч, то полученное нами значение расхода необходимо умножить на коэффициент 3,6.

Пример расчета расхода погружного насоса:


Рассмотрим вариант водоснабжения дачного домика, в котором есть такие сантехнические приборы:

  • Душ со смесителем – 0,09 л/с;
  • Водонагреватель электрический – 0,1 л/с;
  • Раковина на кухне – 0,15 л/с;
  • Умывальник – 0,09 л/с;
  • Унитаз – 0,1 л/с.

Суммируем расход всех потребителей: 0,09+0,1+0,15+0,09+0,1,53 л/с.
Так как домик у нас с садовым участком и огородом, не помешает добавить сюда поливочный кран, расход которого 0,3 м/с. Итого, 0,53+0,3,83 л/с.

Находим по таблице 2 значение расчетного расхода: значению 0,83 л/с соответствует 0,48 л/с.
Переводим л/с в л/мин, для этого 0,48*60=28,8л/мин.
И последнее – переводим л/с в м3/ч, для этого 0,48*3,6=1,728 м3/ч.

Важно! Иногда производительность насоса указывается в л/ч, тогда полученное значение в л/с необходимо умножить на 3600. Например, 0,48*3600=1728 л/час.

Вывод: расход системы водоснабжения нашего дачного домика составляет 1,728 м3/ч, поэтому производительность насоса должна быть больше 1,7 м3/ч.
Чтобы более точно определить подходящую модель насоса, необходимо рассчитать требуемый напор.

Расчет напора погружного насоса

Напор насоса или высота подъема воды рассчитывается по формуле, представленной ниже. Учитывается, что насос полностью погружен в воду, поэтому такие параметры, как перепад высот между источником воды и насосом, не учитываются.
Расчет напора скважинного насоса


Формула для расчета напора скважинного насоса:


Где,
Hтр – значение требуемого напора скважинного насоса;
Hгео – перепад высот между местом нахождения насоса и наивысшей точкой системы водоснабжения;


Hпотерь – сумма всех потерь в трубопроводе. Данные потери связаны с трением воды о материал труб, а также падением давления на поворотах труб и в тройниках. Определяется по таблице потерь.


Hсвоб – свободный напор на излив. Чтобы можно было комфортно пользоваться сантехническими приборами, данное значение необходимо брать 15 – 30м, минимально допустимое значение 5м, но тогда вода будет подаваться тонкой струйкой.


Все параметры измеряются в тех же единицах, в чем измеряется напор насоса, - в метрах.
Расчет потерь в трубопроводе можно рассчитать, изучив таблицу ниже. Обратите внимание, в таблице потерь обычным шрифтом указана скорость, с которой вода протекает по трубопроводу соответствующего диаметра, а выделенным шрифтом – потери напора на каждые 100м прямого горизонтального трубопровода. В самом низу таблиц указаны потери в тройниках, угловых соединениях, обратных клапанах и задвижках. Естественно, для точного расчета потерь необходимо знать протяженность всех участков трубопровода, количество всех тройников, поворотов и клапанов.

Таблица 3. Потери напора в трубопроводе из полимерных материалов.


Рассмотрим такой вариант водоснабжения дачного дома:

  • Глубина скважины 35м;
  • Статический уровень воды в скважине – 10м;
  • Динамический уровень воды в скважине – 15м;
  • Дебет скважины – 4м3/час;
  • Скважина расположена на удалении от дома – 30м;
  • Дом двухэтажный, санузел находится на втором этаже – 5м высота;

В первую очередь считаем Hгео = динамический уровень + высота второго этажа = 15 + 5 = 20м.
Далее считаем Hпотерь. Примем, что горизонтальный трубопровод у нас выполнен полипропиленовой трубой 32 мм до дома, а в доме трубой 25 мм. Наличествует один угловой поворот, 3 обратных клапана, 2 тройника и 1 запорная арматура. Производительность возьмем из предыдущего расчета расхода 1,728 м3/час. Согласно предложенным таблицам ближайшее значение равно 1,8 м3/час, поэтому округлим до этого значения.
Hпотерь = 4,6*30/100 + 13*5/100 + 1,2 + 3*5,0 + 2*5,0 + 1,2 = 1,38+0,65+1,2+15+10+1,2=29,43м ≈ 30м.
Hсвоб примем 20м.
Итого, требуемый напор насоса равен:
Hтр = 20 + 30 + 20 = 70м.

Вывод: учитывая все потери в трубопроводе, нам необходим насос, напор которого равен 70 м. Также из предыдущего расчета мы определили, что его производительность должна быть выше 1,728 м3/час.

Рассмотрим пример подбора погружного насоса по графику «Водомёт».




При пересечении 70 метров напора, и требуемых 30 литрах в минуту, подходящим насосом будет «Водомёт» 60/92. Максимальный расход воды не должен превышать дебит скважины, он должен быть на 5-10% меньше дебита скважины. Если этого не сделать, работа насоса будет приводить к снижению динамического уровня воды ниже всасывающей части насоса. Это чревато работой насоса без воды –«сухому ходу», что можно еще избежать, поставив автоматику.

Более конкретный выбор насоса уже зависит от финансовых возможностей хозяина дома.